

Jornada IMAC sobre Métodos Topológicos en Análisis

Universitat Jaume I

IMAC, TI1329DS, 16 de junio de 2016

Programa:

•11:30 Aníbal Moltó (Universitat de València):

Some topological properties of a compact K that imply that the space C(K) has good renorming properties

Abstract:

We will consider some classes of compacta *K* for which C(K), the Banach space of all continuous functions on *K*, admits an equivalent local uniformly rotund equivalent (LUR) norm or a Kadets one. It is well known that a Banach space $(X, || \cdot ||)$ with a LUR norm has the Kadets property that, in turn, implies that it has a countable cover by sets of small locally $|| \cdot ||$ -diameter (SLD).

We will discuss the presence of these properties on C(K) for some classes of compacta K like Valdivia, Namioka–Phelps, some Alexandrov compactifications of trees and some distributive lattices that are compact for a topology for which the order is continuous.

•12:30 Helge Glöckner (Universität Paderborn, Germany):

Exponential laws in topology and analysis

Abstract:

If *X*, *Y*, and *Z* are Hausdorff topological spaces and $f: X \times Y \to Z$ is a continuous map, then $\check{f}(x) \coloneqq f(x,.) \in C(Y,Z)$ for each $x \in X$ and $\check{f}: X \to C(Y,Z)$, $x \mapsto \check{f}(x)$ is continuous with respect to the compact-open topology on C(Y,Z). Moreover, the map $\Phi: C(X \times Y, Z) \to C(X, C(Y,Z)), \qquad f \mapsto \check{f}$

is a homeomorphism onto its image; if *Y* is locally compact or $X \times Y$ is a k-space, then Φ is surjective and hence Φ is a homeomorphism. In my talk, I recall this classical fact and describe variants for spaces of differentiable functions and applications in topology and analysis.

http://www.imac.uji.es

