COLOQUIO ΠRØBEMOΣ

Seminario a cargo de Marita Ferrer

Teorema de MacWilliams para códigos de bloque.

ABSTRACT: Let *F* be a finite field. Two linear codes C_1 and C_2 over *F* of length *n* are *equivalent* if there is a monomial transformation *H* of F^n such that $H(C_1) = (C_2)$. Here, a monomial transformation is a linear isomorphism *H* of the form $H(a_1, ..., a_n) = (a_{\sigma(1)}w_1, ..., a_{\sigma(n)}w_n)$, $(a_1, ..., a_n) \in F^n$, where σ is a permutation of $\{1, 2, ..., n\}$ and $(w_1, ..., w_n) \in (F \setminus \{0\})^n$. The Hamming weight wt(x) of a vector $x \in F^n$ is defined as the number of coordinates that are different from zero. MacWilliams classical result establishes the relation between Hamming isometries and equivalent codes.

Theorem (MacWilliams): Two linear codes C_1 and C_2 of dimension k in F^n are equivalent if and only if there exists an abstract *F*-linear isomorphism $f: C_1 \rightarrow C_2$

which preserves weights wt(f(x)) = wt(x), for all $x \in C_1$.

Hence, two block codes are *isometric* if and only if they are monomially equivalent. More precisely, weight-preserving isomorphisms between codes are given by a permutation and rescaling of the coordinates. The fundamental result has been extended in different directions by many workers. In particular Heide Gluesing-Luerssen has established a variant of MacWilliams theorem for 1-dimensional convolutional codes and the isometries defined between them that respect the module structure of the codes. It remains open the representation of general F-isometries defined between convolutional codes.

A direct and concise proof of this classical result will be given in this talk.

Fecha: 6 de marzo de 2015, a las 11:00 horas Lugar: IMAC (Seminario TI1329SD), ESTCE. Universitat Jaume I de Castelló

