Jornada IMAC en Topología Descriptiva y Análisis Funcional

Universitat Jaume I

IMAC, TI1329DS, 24 de septiemnbre de 2014

Programa

11:30 Jerzy Kakol (A. Mickiewicz University, Poznan): The weak topology of a Frechet space.

We study those Fréchet locally convex spaces E which are weakly \aleph -spaces (in sense of O'Meara), i.e. under the weak topology E has a σ -locally finite k-network. Every \aleph_0 -space is an \aleph -space, and every \aleph_0 -space is hereditary separable and Lindelöf. It is known (Michael) that if E is a separable Banach space whose dual is separable then E with the weak topology $\sigma(E, E')$ is an \aleph_0 -space. Let $E := C_c(X)$ be a Fréchet locally convex space of continuous real-valued functions on a Tychonoff space X endowed with the compact-open topology. The main result states that E under its weak topology $\sigma(E, E')$ is an \aleph -space if and only if E is a weakly \aleph_0 -space (in sense of E. Michael). This essentially extends a result of Corson. Several additional facts and open questions are provided.

12:30 Manuel López Pellicer (Universidad Politécnica de Valencia): Nikodym boundedness property in webs.

By ba(A) it is denoted the set of bounded finite measures on an algebra of sets (Ω, A) , endowed with the variation norm. In a recent paper, M. Valdivia say that a subset \mathcal{B} of \mathcal{A} has the Nikodym boundedness property whenever, given an arbitrary subset $H \subset ba(A)$ such that, for each $B \in \mathcal{B}$,

$$\sup\{|\mu(B)|:\mu\in H\}<\infty$$

then H is bounded.

Among other results, Valdivia proved that if Ω is a compact k-dimensional interval in \mathbb{R}^k , \mathcal{A} is the algebra of Jordan measurable subsets of Ω , $\mathcal{A} = \cup_n \mathcal{A}_n$, with $\mathcal{A}_n \subset \mathcal{A}_{n+1}$, $n \in \mathbb{N}$, then there exists $m \in \mathbb{N}$ such that \mathcal{A}_m has the Nikodym boundedness property.

For a σ -algebra \mathcal{A} , Valdivia proves that if $\mathcal{A} = \cup_n \mathcal{A}_n$, with $\mathcal{A}_n \subset \mathcal{A}_{n+1}$, $n \in \mathbb{N}$, then there exists $m \in \mathbb{N}$ such that \mathcal{A}_m has the Nikodym boundedness property.

We will a present an extension of this last result showing that if $\{A_{n_1,n_2,\dots,n_{p-1}n_p}: n_i \in \mathbb{N}, 1 \leqslant i \leqslant p, p \in \mathbb{N}\}$ is an increasing web in A, then there exists a sequence $(m_i)_i$ in \mathbb{N} such that, for each $i \in \mathbb{N}$, $A_{m_1,m_2,\dots,m_{i-1}m_i}$ has de Nikodym boundedness property.

Some applications of this result and some open problem will be presented.