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STRUCTURE OF THE TALK 

¢ The object under study: Non-local games 
¢ Examples. Why are they important? 

�  Complexity theory I. Innaproximability results.  
�  Complexity theory II. Parallel computation.  
�  Position based cryptography. 
�  Certifiable random number generation. 
�  … … 

¢ Where are the maths? 
�  Our contribution. Operator Spaces. 

¢  Based on joint works (2008-2019) with T. Cooney, M 
Junge, A.M. Kubicki, C. Palazuelos, I. Villanueva, 
M.M. Wolf.  



NON-LOCAL GAMES   



NON-LOCAL GAMES 
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a b

1.  A set of possible questions for Alice and Bob (denoted by x,y resp.). 
2.  A known probability distribution for the questions. 
3.  A known boolean function V(x,y,a,b) which decides, based on questions 

and answers a,b, whether they win (=1) or lose (=0) the game. 
4.  A limitation in the communication between Alice and Bob.  
 



NON-LOCAL GAMES 

x y

a b

 The value of the game is the largest probability of wining the game 
while optimizing over the possible strategies of Alice and Bob.  
 It is assumed that Alice and Bob have free communication BEFORE the 
game to coordinate an strategy .  
 Hence strategies can involve shared randomness (classical value of 
the game) or quantum entanglement (quantum value of the game) 
depending on the resources of Alice and Bob.  

 



NON-LOCAL GAMES 
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What is an strategy?   
A probability distribution p(ab|xy) 
 
Which are the possible strategies in the classical case? 
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And in the quantum one? 
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EXAMPLES. 
INNAPROXIMABILITY   



EXAMPLES.  
INNAPROXIMABILITY RESULTS 

Theorem (PCP theorem (Arora et al., 92)+ Parallel repetition 
(Raz, 94)): 
 Unless P=NP,  given e>0 and a game with the 
promise that the value is 1 or <e, there cannot exist 
a polynomial algorithm to decide which is the case. 
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EXAMPLES.  
INNAPROXIMABILITY RESULTS 

 It is the mother of most innaproximability results. 
For instance:  

 
Theorem (Hastad, 1999): 

 Unless P=NP, given e>0 and a polynomial algorithm 
to determine the MAX-CLIQUE of a graph, there 
exist graphs of n vertices for which  

en −= 1

algorithm  theofoutput 
CLIQUE-MAX

Note that MAX-CLIQUE is always less or equal than n (!!) 
The same result is true for the CHROMATIC NUMBER. 



EXAMPLES.  
INNAPROXIMABILITY RESULTS 

Connection with non-local games. Via LABEL-COVER. 
 
Given a bipartite graph  
 
A set of colors  
 
And a set of valid configurations for each edge 
 
 
Find a coloring of the graph which maximizes the number of 

edges with a valid configuration. 
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EXAMPLES.  
INAPROXIMABILITY RESULTS 

Connection with non-local games. Via LABEL-COVER. 
 

Colors 



EXAMPLES.  
INAPROXIMABILITY RESULTS 

Connection with non-local games. Via LABEL-COVER. 
 

Colors 

Solution to LABEL-COVER = 5 



EXAMPLES.  
INNAPROXIMABILITY RESULTS 

Connection with non-local games. Via LABEL-COVER. 
 
Given an instance of LABEL-COVER, we define a non-
local game by: 
 
Questions  = edges (the vertex from U to Alice and from 
W to Bob) with uniform probability. 
 
Answers = colors to the vertices. 
 
They win the game if they give a valid coloring for the 
edge which is asked. Then: 
 
Value of the game * number of edges = LABEL-COVER 
 
 



EXAMPLES.  PARALLEL 
COMPUTATION  



EXAMPLES.  
PARALLEL COMPUTATION 

Given a boolean function f(x,y), minimize c in:  
 

x y 

c bits of  
communication 

f(x,y) f(x,y) 



EXAMPLES. POSITION BASED 
CRYPTOGRAPHY. 
(CHANDRAN ET AL, 2009) 
 



EXAMPLES. 
POSITION BASED CRYPTOGRAPHY 

The man-in the middle attack 

It seems there cannot be a solution to this problem. 
 
There could be one. Authentication based on position. 
 



EXAMPLES. 
POSITION BASED CRYPTOGRAPHY 

1D for simplicity 

x y

a b

AIM: That only someone in position P could 
answer with probability 1 to the challenge.  
à Solution to the man-in-the-middle problem.  

Coordinated 

Position 
P 



EXAMPLES. 
POSITION BASED CRYPTOGRAPHY 

Relation with non-local games. Since the verifiers act 
coordinated, we can assume there is just one of them.  
Based on answering times, we have: 

x y

a b

Communication “independent-one-way” 



EXAMPLES. 
POSITION BASED CRYPTOGRAPHY 
Hence, the aim is to find a challenge which can be won 
always with arbitrary communication (all classical 
challenges are like that) but not with “independent-one-
way” communication. 

x y

a b

The honest case is the 
one of arbitrary 
communication, since 
there is only a single 
prover.  



EXAMPLES. 
POSITION BASED CRYPTOGRAPHY 

This is impossible classically. Both models of 
communication are the same. To see it, just copy and 
send the received question.  

In the quantum case (with no entanglement) it is indeed 
possible (Buhrman et al., 2010). The key idea lies on the 
fact that it is NOT possible to copy quantum states by the 
NO-CLONING theorem. 

Question: Is it also possible when a polynomial amount of 
entanglement is allowed? 
 
Partial answers (Beigi et al., Burhman et al, 2011, 
Tomamichael et al 2013):  
LINEAR = YES, EXPONENTIAL = NO. 



EXAMPLES. RANDOM NUMBER 
GENERATION 
 



EXAMPLE. 
RANDOM NUMBER GENERATION 

(September 2013) But internal memos leaked by a former 
N.S.A. contractor, Edward Snowden, suggest that the N.S.A. 
generated one of the random number generators used in a 
2006 N.I.S.T. Standard - called the Dual_EC-DRBG standard 
– which contains a back door for the N.S.A.   



EXAMPLE. 
RANDOM NUMBER GENERATION 

PROBLEM: How to construct an apparatus which 
generates perfect random numbers (and hence secret) 
in a certifiable way? 

001110101001010101….
. 

could have a copy of  001110101001010101….. 

But in quantum mechanics copying is not allowed !!! 



EXAMPLE. 
RANDOM NUMBER GENERATION 

Theorem (Pironio et al., Colbeck et al., 2010):   
If  (after many rounds in the game) one gets a value 
strictly larger than the classical one, there is a 
classical post-processing of the outputs a, b which 
produces numbers which are perfectly random and 
secret.  

x y

a b



EXAMPLE. 
RANDOM NUMBER GENERATION 

Comments:   

One needs a small random seed to run the algorithm. 
 
Done even experimentally !! 
 
Improved later by many authors (e.g. Miller et al. and 
Chung et al, 2014).  

  
1.   The initial seed is allowed to be only very 

 weakly random and secret. 
2.   The size of the final random string is 

 exponential on the size of the seed. 
3.   All steps are robust and efficient 



EXAMPLE. 
RANDOM NUMBER GENERATION 

The key is, hence, the existence of quantum 
strategies which are NOT classical. This 
guarantees an intrinsic randomness.  

)|( xyabp
Classical 

Quantum 



OUR CONTRIBUTION 



THE PROBLEMS WE WANT TO ATTACK.  
GAMES WITH CLASSICAL QUESTIONS/ANSWERS 

Estimate D. 
Parameters:  
Number of questions = N  
Number of answers = M 
Size (dimension) of the quantum system = d 

D 

Quantum 
strategies 

Classical 
strategies 

)|( xyabp

How large can D be? 

D = max quantum value
classical value



OPERATIONAL INTERPRETATION OF D 

D = 1+ p
1-p

, p ∈ [0,1]

Where p is the maximum 
(classical) noise that a quantum 
strategy can withstand before 
getting classical. 

It is hence desirable to have a large D. How does 
D scale with the parameters N,M, d? 

D 

D also related to the amount of saving in 
communication (parallel computing) by using quantum 
resources. 



MAIN THEOREM 1: 

Theorem (Junge, Palazuelos, Pérez-García, 
Villanueva, Wolf, CMP+PRL 2010). 
D can be arbitrarily large, This requires:  
N= D^2 
M= EXP(D) 
d= D^2 

Theorem (Junge, Palazuelos, 2011). 
N= D^2, M= D^2, d= D^2 

Later improvements 

Theorem (Buhrman et al, 2011). 
N= D, M= EXP(D), d= D. 

Theorem (Junge, Oikhberg, Palazuelos, 2016). 
N= D, M= D^8, d= D 



THE PROBLEMS WE WANT TO ATTACK.  
GAMES WITH QUANTUM QUESTIONS/ANSWERS 

How hard is it to estimate the value of a quantum 
game? 

If we play a game n times in parallel and we want to 
win all n times. Does the probability of doing it 
decreases exponentially with n? (parallel repetition 
theorem) 
 
Is exponential entanglement needed to break position 
based crypto protocols? 

Complexity theory: 

Position based crypto (and other Q-protocols) 



MAIN THEOREM 2: 

Theorem (Cooney, Junge, Palazuelos, Pérez-García, CC 
2014). For rank-one quantum games 
 
There is a parallel repetition theorem for the value with 
one-way communication. 
There is no perfect parallel repetition for the value with 
no communication. 
 
The value with one-way communication can be computed 
efficiently. 
The value with no communication can be approximated 
efficiently up to (multiplicative) constant 4. 
 
Proved independently by Regev and Vidick (similar proof) 



MAIN THEOREM 3: 

Theorem (Kubicki, Palazuelos, Pérez-García, PRL 2019).  
 
There exists a quantum game so that in the “independent 
one-way” communication scenario has value 1 but any 
“universal” strategy requires exponential entanglement. 
 

“Universal” means that in the second round of the optimal 
strategy, the operations made by Alice and Bob do not 
depend on the concrete question they receive. 
 
All known attacks to position based crypto are universal. 



THE TOOLS: OPERATOR SPACES 



OPERATOR SPACES 

An operator space is a complex vector space E with 
a sequence of norms defined on              such that: 

 

Given a C*-algebra, there exists a unique norm 
which makes                a C*-algebra. With these 
norms, A is an operator space.  
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OPERATOR SPACES 

In particular:  

Given 
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OPERATOR SPACES 

The morphisms in this category are the completely 
bounded maps: 
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CB(E,F) is an operator space via 
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In particular E* is an operator space 



CONNECTION WITH CLASSICAL NON-LOCAL 
GAMES 

Theorem (Junge, Palazuelos, Pérez-García, Villanueva, Wolf, 
2010). 
Given a non-local game 
 
The classical value is given  (with the order a,x,b,y) by the 
norm: 
 
 
 
The quantum value, by the norm: 
  
 
 
 

Tab
xy = π (x, y)V (x, y,a,b)
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CONNECTION WITH RANK-ONE QUANTUM 
GAMES 

Theorem (Cooney, Junge, Palazuelos, Perez-Garcia, 2014). 
 
Any rank-one quantum game can be associated with a 
map 
 
 
So that the quantum value of the game is exactly 
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T :Mn →Mn
*
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CONNECTION WITH POSITION BASED 
CRYPTOGRAPHY 

Theorem (Kubicki, Palazuelos, Perez-Garcia, 2019). 
 
There exists a family of quantum games so that 
“universal” winning strategies correspond exactly to 
completely contractive maps (contractive for cb-norm) 
 
 
 
that are Banach space embeddings (n = size of the 
game, N = dimension of entanglement) 
 

xy
abT

T :Mn
*→MN
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Operator Spaces are the natural mathematical 
framework to analyze non-local games. 
 

TAKE HOME MESSAGE 
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