What makes Quantum Physics different from earlier Physics?

23 January 2019 Seminar at IMAC, UJI

Juan I. Climente

Quantum Chemistry Group

Quantum physics vs classical physics

1. The experiments 2. The theory 3. Bonus track

Quantum physics vs classical physics

1. The experiments

2. The theory

3. Bonus track

An experiment with bullets

An experiment with waves

An experiment with electrons

Let's watch the electrons

 $\Delta p \, \Delta x \geq h$

Summary of first principles:

(1) The probability of an event is $P=|\psi|^2$, where ψ is a complex number we call amplitude.

(2) If an event can take place in different ways, then $P=|\sum_i \psi_i|^2$.

(3) If an experiment is able of determining which alternative is taken, then P= $\sum\limits_{\mathsf{i}}$ P i .

Why?

We only talk about predicting odds

8 *Seems to explain everything on atomic scale*

Quantum physics vs classical physics

1. The experiments

2. The theory

3. Bonus track

Schrödinger's Equation

1900-1926 – The years of confusion

 $E = h\nu$

$E = h\nu$	$p = \frac{h}{\lambda}$
Planck's equation	$p = \frac{h}{\lambda}$

$$
\boxed{\Delta p \Delta x \geq h}
$$

Heisenberg's uncertainty

1927 – Postulate of the differential equation

Wave equation Newton's 2nd law - waves - - particles let's make it *dual* $p=\hbar k$ $E=\hbar\omega$ $(\hbar = h/2\pi)$

De Broglie's hypothesis

Schrödinger's Equation

Newton's 2nd law
\n- particles
\n
$$
\vec{F} = \frac{d\vec{p}}{dt}
$$
\n
$$
\frac{\partial^2 \Psi}{\partial t^2} = v^2 \frac{\partial^2 \Psi}{\partial x^2}
$$
\nwave equation
\n
$$
\Psi(x, t) = A e^{i(px - Et)/\hbar} \longrightarrow \frac{E^2}{\hbar^2} \Psi = v^2 \frac{p^2}{\hbar^2} \Psi
$$
\nRelative particle:
\n
$$
\Sigma = p c
$$
\nSlow particles:
\n
$$
\Sigma = p^2 / 2m
$$
\nSlow particles:
\n
$$
\frac{v}{E} = p^2 / 2m
$$
\n
$$
\frac{\partial \Psi}{\partial t} = \beta \frac{\partial^2 \Psi}{\partial x^2} \longrightarrow i\hbar \frac{-i}{\hbar} E \Psi = \frac{-\hbar^2}{2m} \left(\frac{-p^2}{\hbar^2}\right) \Psi
$$

11

Schrödinger's Equation

$$
i\hbar\frac{\partial\Psi}{\partial t}=-\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2}+V(x,t)\Psi
$$

$$
i\hbar\frac{\partial\Psi}{\partial t}=\left(-\frac{\hbar^2}{2m}\nabla^2+V(\vec{r},t)\right)\,\Psi
$$

Physical-mathematical considerations:

1) $\psi(\mathbf{r},t)$ is the (complex) amplitude associated with the probability of finding a particle at (**r**,t). Call it *wave function*:

$$
P(\vec{r},t) = \Psi(\vec{r},t)^* \Psi(\vec{r},t)
$$

2) Total probability of finding the particle confined in a volume must be unity.

$$
\int \Psi(\vec{r},t)^* \Psi(\vec{r},t) dV = 1
$$
 normalization condition

Then, $\psi(\mathbf{r},t)$ must be square integrable. For bound particles, if $\mathbf{r} \rightarrow \infty$ then $\psi(\mathbf{r},t) \rightarrow 0$.

3) $\psi(\mathbf{r},t)$ must be well behaved.

3.1) Finite. $3.2)$ Single-valued. $3.3)$ Continuous. 1st derivatives too.

4) Trivial solution, meaningless.

Let's play!

$$
i\hbar \frac{\partial \Psi}{\partial t} = \left(-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r}, t)\right)\Psi
$$

13

Particle in a 1D box

$$
i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V(x) = E \qquad \Psi(x, t) = f(x) g(t)
$$

$$
\left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right] f(x) = E f(x)
$$
Time-independent
Schrödinger Equation
- stationary states -

$$
-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} f(x) = Ef(x) \longrightarrow f(x) = A \sin kx + B \cos kx
$$

\nBoundary\n
$$
f(0) = 0 \longrightarrow f(x) = A \sin kx
$$
\nconditions\n
$$
f(L) = 0 \longrightarrow 0 = \sin kL \longrightarrow k = \frac{\pi n}{L}, \quad n = 1, 2, 3 \dots
$$
\n
$$
f_n(x) = A \sin \frac{n\pi x}{L} \quad E_n = \frac{\hbar^2 \pi^2}{2mL^2} n^2
$$

It's a quantum world

$$
n=1,\,2,\,3\ldots
$$

Energy is quantised

Quantised energies explain discrete atomic spectra:

H Balmer series, 1885

$$
E_n = \frac{\hbar^2 \pi^2}{2mL^2} n^2
$$

Operators

Schrödinger Equation $\hat{E}\Psi = \hat{H}\Psi$

15

All operators are Hermitian

Remember: *We only talk about predicting odds*

Mean value of a physical magnitude: $\langle \ \rangle$

$$
A\rangle = \frac{\int \Psi^* \hat{A} \Psi dV}{\int \Psi^* \Psi dV}
$$

Variational principle

Let ψ be the eigenfunction of the Hamiltonian, with eigenvalue $\mathsf{E}_{_{\sf exact}}$. For any function Φ with the same boundary conditions, and well-behaved, it holds:

$$
\langle E\rangle_{approx}=\frac{\int\Phi^*\hat{H}\Phi dV}{\int\Phi^*\Phi dV}\geq \frac{\int\Psi^*\hat{H}\Psi dV}{\int\Psi^*\Psi dV}=\langle E\rangle_{exact}
$$

whose scalar product is given by $\quad \int \, \varphi_i^* \varphi_j dV \quad$, define an aproximate solution as $|\Phi=\sum c_i\varphi_i|$ and obtain the coefficients by It is customary to build a basis set formed by linearly independent functions: minimizing $\langle E \rangle_{approx}$

Optimizing the basis set to reduce the required Hilbert space dimension has been the front line of Quantum Chemistry research for over 40 years now.

Quantum Physics and Mathematics:

- (*) Linear algebra
- (*) Algebra of creation/annihilation operators
- (*) Numerical methods
- (*) Group theory (symmetry and permutation groups)

What makes Quantum Physics different from earlier Physics?

(1) Dual character particle-wave

(2) No longer «deterministic». We calculate probable values

(3) Simultaneous knowledge of some magnitudes impossible

(4) Schrödinger equation replaces Newton 2^{nd} law & wave eq.

(5) Physical magnitudes have quantised values

Quantum physics vs classical physics

1. The experiments

2. The theory

3. Bonus track

Let ψ be the eigenfunction of the Hamiltonian, with eigenvalue $\mathsf{E}_{_{\sf exact}}$. For any function Φ with the same boundary conditions, and well-behaved, it holds:

$$
\langle E\rangle_{approx}=\frac{\int \Phi^*\hat{H}\Phi dV}{\int \Phi^*\Phi dV}\geq E_{exact}
$$

We choose a trial function $\Phi_{_\alpha}$ with a set of adjustable parameters $\alpha = \{\alpha_{_1},\alpha_{_2},\alpha_{_3}...\}$, and look for those which minimize the energy.

An efficient way must be found to calculate the multi-dimensional integral above.

$$
\hat{H}\Psi(\vec{r}) = E\Psi(\vec{r})
$$
\n
$$
E_L(\vec{r}) = \frac{\hat{H}\Psi(\vec{r})}{\Psi(\vec{r})}
$$
\n
$$
\langle E \rangle_{approx} = \frac{\int |\Phi|^2 E_L dV}{\int |\Phi|^2 dV} \approx \frac{\sum |\Phi|^2 E_L dV}{\sum |\Phi|^2 dV}
$$

Stochastic methods: draw random values within V, average integrand, minimize energy or variance

Variational Quantum Montecarlo

$$
\langle E \rangle_{approx} = \frac{\sum |\Phi|^2 E_L dV}{\sum |\Phi|^2 dV} \qquad E_L(\vec{r}) = \frac{\hat{H}\Phi(\vec{r})}{\Phi(\vec{r})}
$$

Smart sampling critical for *efficient* calculation

Random sampling (between -1 and 1) **Metropolis** algorithm: priority to points with largest |Φ| 2 values. Good results with **much** fewer points.

Standard technique for many-electron systems, **but fails for charges of opposite sign**.

$$
\hat{H} = \sum_{i=e,h} \frac{\vec{p}_i^2}{2m} + V(\vec{r}_e) + V(\vec{r}_h) - \frac{1}{\epsilon r_{eh}}
$$

$$
\Phi = \Phi_e(\vec{r}_e)\Phi_h(\vec{r}_h) e^{-ar_{eh}}
$$