What makes Quantum Physics different from earlier Physics?

Seminar at IMAC, UJI 23 January 2019

Juan I. Climente

Quantum Chemistry Group

Quantum physics vs classical physics

The experiments The theory Bonus track

Quantum physics vs classical physics

1. The experiments

2. The theory

3. Bonus track

An experiment with bullets

An experiment with waves

An experiment with electrons

Let's watch the electrons

 $\Delta p \, \Delta x \ge h$

Summary of first principles:

(1) The probability of an event is $P=|\psi|^2$, where ψ is a complex number we call amplitude.

(2) If an event can take place in different ways, then $P=|\sum_{i} \Psi_{i}|^{2}$.

(3) If an experiment is able of determining which alternative is taken, then $P = \sum_i P_i$.

Why?

We only talk about predicting odds

Seems to explain everything on atomic scale

Quantum physics vs classical physics

1. The experiments

2. The theory

3. Bonus track

Schrödinger's Equation

1900-1926 – The years of confusion

 $E = h\nu$

$$E=h
u$$
 $p=rac{h}{\lambda}$ Planck's equation

 $\Delta p \Delta x \ge h$

Heisenberg's uncertainty

1927 – Postulate of the differential equation

 $\frac{\partial^2 \Psi}{\partial t^2} = v^2 \, \frac{\partial^2 \Psi}{\partial r^2}$ $d\vec{p}$ Newton's 2nd law $ec{F}=$ Wave equation - waves -

De Broglie's hypothesis

$$\begin{split} \Psi(x,t) &= A \, e^{i(kx - \omega t)} & \longrightarrow & \Psi(x,t) = A \, e^{i(px - Et)/\hbar} \\ k &= \frac{2\pi}{\lambda} & \omega = 2\pi\nu & \text{let's make it} \\ p &= \hbar k \\ E &= \hbar\omega \\ (\hbar &= h/2\pi) \end{split}$$

Schrödinger's Equation

Newton's 2nd law
$$\vec{F} = \frac{d\vec{p}}{dt}$$
 $\frac{\partial^2 \Psi}{\partial t^2} = v^2 \frac{\partial^2 \Psi}{\partial x^2}$ Wave equation -waves -
 $\Psi(x,t) = A e^{i(px-Et)/\hbar} \longrightarrow \frac{E^2}{\hbar^2} \Psi = v^2 \frac{p^2}{\hbar^2} \Psi$
Relativistic particles: $\int v = c$
 $E = pc$ \checkmark
Slow particles: $\int v < c$
 $E = p^2/2m$ \bigstar
Guess: $\alpha \frac{\partial \Psi}{\partial t} = \beta \frac{\partial^2 \Psi}{\partial x^2} \longrightarrow i\hbar \frac{-i}{\hbar} E\Psi = \frac{-\hbar^2}{2m} \left(\frac{-p^2}{\hbar^2}\right) \Psi$

11

Schrödinger's Equation

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V(x,t) \Psi$$

$$i\hbar\frac{\partial\Psi}{\partial t} = \left(-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r},t)\right) \Psi$$

Physical-mathematical considerations:

1) $\psi(\mathbf{r},t)$ is the (complex) amplitude associated with the probability of finding a particle at (\mathbf{r},t). Call it *wave function*:

$$P(\vec{r},t) = \Psi(\vec{r},t)^* \Psi(\vec{r},t)$$

2) Total probability of finding the particle confined in a volume must be unity.

$$\int \Psi(\vec{r},t)^* \, \Psi(\vec{r},t) dV = 1 \qquad \text{normalization condition}$$

Then, $\psi(\mathbf{r},t)$ must be square integrable. For bound particles, if $\mathbf{r} \to \infty$ then $\psi(\mathbf{r},t) \to 0$.

3) ψ (**r**,t) must be well behaved.

3.1) Finite. 3.2) Single-valued. 3.3) Continuous. 1st derivatives too.

4) Trivial solution, meaningless.

Let's play!

$$i\hbar\frac{\partial\Psi}{\partial t} = \left(-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r},t)\right) \Psi$$

13

Particle in a 1D box

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V(x) = E \qquad \Psi(x,t) = f(x) g(t)$$

$$\begin{bmatrix} -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \end{bmatrix} f(x) = Ef(x) \qquad \text{Time-independent}$$
Schrödinger Equation - stationary states -

$$-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}f(x) = Ef(x) \longrightarrow f(x) = A\sin kx + B\cos kx$$

Boundary conditions
$$\begin{cases} f(0) = 0 & \longrightarrow f(x) = A\sin kx \\ f(L) = 0 & \longrightarrow 0 = \sin kL & \longrightarrow k = \frac{\pi n}{L}, \ n = 1, 2, 3 \dots \end{cases}$$
$$f_n(x) = A\sin\frac{n\pi x}{L} \qquad E_n = \frac{\hbar^2 \pi^2}{2mL^2}n^2$$

It's a quantum world

$$n = 1, 2, 3...$$

Energy is quantised

Quantised energies explain discrete atomic spectra:

H Balmer series, 1885

$$E_n = \frac{\hbar^2 \pi^2}{2mL^2} n^2$$

Operators

Schrödinger Equation

 $\hat{E}\Psi = \hat{H}\Psi$

All operators are Hermitian

Remember: We only talk about predicting odds

Mean value of a physical magnitude: <

$$A\rangle = \frac{\int \Psi^* \hat{A} \Psi dV}{\int \Psi^* \Psi dV}$$
15

Variational principle

Let ψ be the eigenfunction of the Hamiltonian, with eigenvalue E_{exact} . For any function Φ with the same boundary conditions, and well-behaved, it holds:

$$\langle E \rangle_{approx} = \frac{\int \Phi^* \hat{H} \Phi dV}{\int \Phi^* \Phi dV} \ge \frac{\int \Psi^* \hat{H} \Psi dV}{\int \Psi^* \Psi dV} = \langle E \rangle_{exact}$$

It is customary to build a basis set formed by linearly independent functions: $\{\varphi_1, \varphi_2, \varphi_3 \ldots\}$ whose scalar product is given by $\int \varphi_i^* \varphi_j dV$, define an aproximate solution as $\Phi = \sum_i c_i \varphi_i$ and obtain the coefficients by minimizing $\langle E \rangle_{approx}$

Optimizing the basis set to reduce the required Hilbert space dimension has been the front line of Quantum Chemistry research for over 40 years now.

Quantum Physics and Mathematics:

- (*) Linear algebra
- (*) Algebra of creation/annihilation operators
- (*) Numerical methods
- (*) Group theory (symmetry and permutation groups)

What makes Quantum Physics different from earlier Physics?

(1) Dual character particle-wave

- (2) No longer «deterministic». We calculate probable values
- (3) Simultaneous knowledge of some magnitudes impossible
- (4) Schrödinger equation replaces Newton 2nd law & wave eq.
- (5) Physical magnitudes have quantised values

1. The experiments

2. The theory

3. Bonus track

Let ψ be the eigenfunction of the Hamiltonian, with eigenvalue E_{exact} . For any function Φ with the same boundary conditions, and well-behaved, it holds:

$$\langle E \rangle_{approx} = \frac{\int \Phi^* \hat{H} \Phi dV}{\int \Phi^* \Phi dV} \ge E_{exact}$$

We choose a trial function Φ_{α} with a set of adjustable parameters $\alpha = \{\alpha_1, \alpha_2, \alpha_3, ...\}$, and look for those which minimize the energy.

An efficient way must be found to calculate the multi-dimensional integral above.

$$\begin{array}{c|c}
\hat{H}\Psi(\vec{r}) = E\Psi(\vec{r}) \\
E_L(\vec{r}) = \frac{\hat{H}\Psi(\vec{r})}{\Psi(\vec{r})} \\
\end{array} \rightarrow \langle E \rangle_{approx} = \frac{\int |\Phi|^2 E_L dV}{\int |\Phi|^2 dV} \approx \frac{\sum |\Phi|^2 E_L dV}{\sum |\Phi|^2 dV}$$

Stochastic methods: draw random values within V, average integrand, minimize energy or variance

Variational Quantum Montecarlo

$$\langle E \rangle_{approx} = \frac{\sum |\Phi|^2 E_L dV}{\sum |\Phi|^2 dV} \qquad E_L(\vec{r}) = \frac{\hat{H}\Phi(\vec{r})}{\Phi(\vec{r})}$$

Smart sampling critical for efficient calculation

Metropolis algorithm: priority to points with largest $|\Phi|^2$ values. Good results with **much** fewer points.

Standard technique for many-electron systems, but fails for charges of opposite sign.

$$\hat{H} = \sum_{i=e,h} \frac{\vec{p}_i^2}{2m} + V(\vec{r}_e) + V(\vec{r}_h) - \frac{1}{\epsilon r_{eh}}$$
$$\Phi = \Phi_e(\vec{r}_e) \Phi_h(\vec{r}_h) e^{-ar_{eh}}$$