What makes Quantum Physics
different from earlier Physics?

Seminar at IMAC, UJI
23 January 2019

Juan |. Climente

Quantum Chemistry Group

UNIVERSITAT
Jaume-l



Quantum physics vs classical physics

1. The experiments

2. The theory

3. Bonus track



Quantum physics vs classical physics

1. The experiments



An experiment with bullets

detector A
'
Machlne
gun

X

> P

a) Detection in lumps (discrete clicks, identical loudness)

Particle signatures
b) P12 = Pl + Pz 4




An experiment with waves

Wave ‘\
source
_/

I1o = |Hy + Hy|* =
I + 15 +2+/1; I5 cosd

a) Detection continuous (variable loudness)

b) 1, =IH, +H,I*# 1 +1, Wave signatures °




An experiment with electrons

> P

detector A
i :
Electron gun

X

a) Detection in lumps (discrete clicks, identical loudness)

_ 2
b) I12 _NJl +L|J2| % P1+P2

= |07,

Dual nature:
particle-wave

= | Uy
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Let's watch the electrons

detector A

> P

Electron gun

Heisenberg's Uncertainty Principle X

«It is impossible to design an apparatus to determine which of two
alternatives is taken W|thout destroying the interference pattern»

\ApAa: > h



Quantum physics

Summary of first principles:

(1) The probability of an event is P=||?, where  is a
complex number we call amplitude.

(2) If an event can take place in different ways, then

P=|3 wl”

(3) If an experiment is able of determining which
alternative is taken, then P=3 P..

Why?
We only talk about predicting odds

Seems to explain everything on atomic scale



Quantum physics vs classical physics

2. The theory



Schrodinger’s Equation

1900-1926 — The years of confusion

E = hv p= h ApAx > h
Planck’s equation )\
De Broglie’s hypothesis

Heisenberg’s uncertainty

1927 — Postulate of the differential equatlon

— dp | .
Newton’s 2nd law F — — - Wave equation
- particles - | dt atQ (‘) 582 - waves -

U(x,t) = Agihz—wt) U(x,t) = A gtpr—Et)/h

let's make it
k= 2; w = 2Ty dual
p = hk
E = hw
(h = h/2m)
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Schrodinger’s Equation

Newton'’s 2nd law ﬁ — @ 5)2\1] — U2 82KIJ Wave equation
- particles - dt 77777 atQ 8372 - waves -
E2 2
U(x,t) = AelPr=EO/h > I U= 02% v
Relativistic particles: ;}? i ;C /
| v<c
Slow particles: - _—
E=p*/2m X
8\11 62 . —1 _hZ _p2
Guess: Oéa— = 0— > Zﬁ f EV = % (?) \
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Schrodinger’s Equation

SOV L OV
! ot 2m Ox? mc?

OV h2 0% 2
ov ( f V2+V(F,t)) %

2m

Physical-mathematical considerations:

1) y(r,t) is the (complex) amplitude associated with the probability of finding a particle
at (r,t). Call it wave function:

P(7,t) = W(7, 1)* U(7, 1)
2) Total probability of finding the particle confined in a volume must be unity.
/ U(r, t)* U(r,t)dV =1 normalization condition
Then, @(r,t) must be square integrable. For bound particles, if r - o then (r,t) - 0.

3) W(r,t) must be well behaved.

3.1) Finite. 3.2) Single-valued. 3.3) Continuous. 1% derivatives too.

4) Trivial solution, meaningless.



Let’s play!

ov A,
717;65 ( va + V (7, )) U

Particle in a 1D box

S o0
N 0T R 92T
h—=———X+4+V(z)=F =
/I_I\ T t ot Im 8%2 ('CC) \Ij(xat) f(ZB) g(t)
£o0 o i
X = 2 82
h _ Time-independent
[_% 912 + V(m)] f(z) = Ef(2) Schrodinger Equation
- stationary states -
h? 02
~5 53 (x) =Ef(x) — » f(r) = Asinkx + Bcoskx

0 > f(zx) = Asinkx
0 ™

~ » 0=sinkL ﬂsz, n=12,3...

Boundary f(0) =
conditions | ¢(1) =

2.2
ful(z) = A&nﬁgf E, = T

2
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It’s a quantum world

n=123...

Energy is quantised

25E,

16E,

9E,

4E,

Quantised energies explain discrete atomic spectra:

H Balmer series, 1885

b, =

h27'('2
2m L2

n




Operators

ov h?
Quantum physics: ih—— = —— VU 4 V (7, 1)
ot 2m P
t !
2
Classical physics: - .y
2m
Rule to g EA’ —1h 4 A ; 3
move — ! & p = —1hV V=V
from <
classical to R }52 N
quantum \ 5 - i 1
2m

All operators are Hermitian

Remember: We only talk about predicting odds
[ U ATaV

Schrodinger Equation

EV = HU

Mean value of a physical magnitude: (A)

- [U*aV
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Variational principle

Let ¢ be the eigenfunction of the Hamiltonian, with eigenvalue E__ .

For any function ® with the same boundary conditions, and well-behaved, it holds:

[®*HDAV _ [U*HYdV
= > p—
Elaporor = “rgugav 2 Turway e

It is customary to build a basis set formed by linearly independent functions:

{1, Y2, @3 ...} whose scalar product is given by /cpjcpjdv . define an

aproximate solution as ¢ = Z ciw; and obtain the coefficients by

(]
minimizing (E) 4pprox

Optimizing the basis set to reduce the required Hilbert space dimension has been
the front line of Quantum Chemistry research for over 40 years now.




( *) Linear algebra
( * ) Algebra of creation/annihilation operators
(* ) Numerical methods

( *) Group theory (symmetry and permutation groups)
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What makes Quantum Physics
different from earlier Physics?

(1) Dual character particle-wave

(2) No longer «deterministic». We calculate probable values

(3) Simultaneous knowledge of some magnitudes impossible

(4) Schrodinger equation replaces Newton 2™ law & wave eq.

(5) Physical magnitudes have quantised values
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Quantum physics vs classical physics

3. Bonus track
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Variational Quantum Montecarlo

Let ¢ be the eigenfunction of the Hamiltonian, with eigenvalue E__ .

ct

For any function ® with the same boundary conditions, and well-behaved, it holds:

(E)approz =

[ o*H®dV

>
f @*(I)dV = Eeocact

We choose a trial function @ _with a set of adjustable parameters a={a_,a.,0....},
and look for those which minimize the energy.

An efficient way must be found to calculate the multi-dimensional integral above.

—» <E>appr0:1: —

JI®PELAV S |®PELdV

flepav [ S eFav

Stochastic methods: draw random values within V,
average integrand, minimize energy or variance



Variational Quantum Montecarlo

B, LIBEdV Ho(7)
approx — Z |<I>\2dV (I)(,,:*

Smart sampling critical for efficient calculation

600
500 ] - — —
- P

400

-2 -1

Random sampling (between -1 and 1) Metropolis algorithm: priority to points with largest
|®|* values. Good results with much fewer points.

Standard technique for many-electron systems, but fails for charges of opposite sign.

i=e,h

b = (I)G(Fe)q)h(Fh) e dTeh

N ]32
H — ¢ _)e r) -
v + V(7)) + V(i)
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